Conditional-Entropy Metrics for Feature Selection
نویسندگان
چکیده
We examine the task of feature selection, which is a method of forming simplified descriptions of complex data for use in probabilistic classifiers. Feature selection typically requires a numerical measure or metric of the desirability of a given set of features. The thesis considers a number of existing metrics, with particular attention to those based on entropy and other quantities derived from information theory. A useful new perspective on feature selection is provided by the concepts of partitioning and encoding of data by a feature set. The ideas of partitioning and encoding, together with the theoretical shortcomings of existing metrics, motivate a new class of feature selection metrics based on conditional entropy. The simplest of the new metrics is referred to as expected partition entropy or EPE. Performances of the new and existing metrics are compared by experiments with a simplified form of part-of-speech tagging and with classification of Reuters news stories by topic. In order to conduct the experiments, a new class of accelerated feature selection search algorithms is introduced; a member of this class is found to provide significantly increased speed with minimal loss in performance, as measured by feature selection metrics and accuracy on test data. The comparative performance of existing metrics is also analysed, giving rise to a new general conjecture regarding the wrapper class of metrics. Each wrapper is inherently tied to a specific type of classifier. The experimental results support the idea that a wrapper selects feature sets which perform well in conjunction with its own particular classifier, but this good performance cannot be expected to carry over to other types of model. The new metrics introduced in this thesis prove to have substantial advantages over a representative selection of other feature selection mechanisms: Mutual information, frequency-based cutoff, the Koller-Sahami information loss measure, and two different types of wrapper method. Feature selection using the new metrics easily outperforms other filter-based methods such as mutual information; additionally, our approach attains comparable performance to a wrapper method, but at a fraction of the computational expense. Finally, members of the new class of metrics succeed in a case where the Koller-Sahami metric fails to provide a meaningful criterion for feature selection.
منابع مشابه
A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملA Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملComparison of Two Families of Entropy-based Classification Measures with and without Feature Selection
Many decision tree (DT) induction algorithms, including the popular C4.5 family, are based on the Conditional Entropy (CE) measure family. An interesting question involves the relative performance of other entropy measure families such as Class-Attribute Mutual Information (CAMI). We therefore conducted a theoretical analysis of the CAMI family that enabled us to expose relationships with CE an...
متن کاملClassifying EEG Data into Different Memory Loads Across Subjects
In this paper we consider the question of whether it is possible to classify n-back EEG data into different memory loads across subjects. To capture relevant information from the EEG signal we use three types of features: power spectrum, conditional entropy, and conditional mutual information. In order to reduce irrelevant and misleading features we use a feature selection method that maximizes...
متن کاملFast and Scalable Training of Semi-Supervised CRFs with Application to Activity Recognition
We present a new and efficient semi-supervised training method for parameter estimation and feature selection in conditional random fields (CRFs). In real-world applications such as activity recognition, unlabeled sensor traces are relatively easy to obtain whereas labeled examples are expensive and tedious to collect. Furthermore, the ability to automatically select a small subset of discrimin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005